‘Faster Than Light: Nomad’ Probabilities

Posted: 2024-05-20
Word Count: 283
Tags: ftl-nomad rpg

Inevitably I wondered what the probability table for Faster Than Light: Nomad looked like. And here it is:

Total Skill -3D -2D -1D - 0D - +1D +2D +3D
3+ 5 80.38% 86.81% 92.59% 97.22% 99.54% 99.92% 99.99%
4+ 4 56.65% 67.98% 80.09% 91.66% 98.15% 99.61% 99.92%
5+ 3 34.84% 47.84% 64.35% 83.33% 94.91% 98.46% 99.52%
6+ 2 19.41% 30.56% 47.69% 72.22% 89.35% 95.99% 98.50%
7+ 1 9.43% 17.36% 31.94% 58.33% 80.56% 90.97% 95.78%
8+ 0 4.22% 9.03% 19.44% 41.67% 69.06% 82.64% 90.57%
9+ 1.50% 4.01% 10.65% 27.78% 52.31% 69.44% 80.59%
10+ 0.48% 1.54% 5.09% 16.67% 35.65% 52.16% 65.16%
11+ 0.08% 0.39% 1.85% 8.33% 19.91% 32.02% 43.35%
12 0.01% 0.08% 0.46% 2.77% 7.41% 13.19% 19.62%

Rather that write a Lua or Python script, I took the simple expedient of using https://anydice.com, specifically the following script:

loop N over {-3 .. -1} {
    output [lowest 2 of (2-N)d6] named "[N]D"
}

output 2d6 named "0D"

loop N over {1 .. 3} {
    output [highest 2 of (2+N)d6] named "+[N]D"
}

Setting the output to “At Least” produced the following spreadsheet:

"-3D",4.069830246913926,1.7071127141815055,2,12
#,%
2,100
3,80.3755144033
4,56.6486625514
5,34.8379629629
6,19.4058641975
7,9.426440329190001
8,4.218106995860001
9,1.5046296296000015
10,0.4758230452400014
11,0.0771604938000014
12,0.012860082277401388

"-2D",4.655864197528254,1.9425616742069425,2,12
#,%
2,100
3,86.8055555556
4,67.9783950618
5,47.8395061729
6,30.5555555556
7,17.361111111200003
8,9.027777777870003
9,4.012345679100004
10,1.5432098766300038
11,0.3858024692200037
12,0.07716049391100371

"-1D",5.54166666666506,2.214875006924007,2,12
#,%
2,100
3,92.59259259259
4,80.09259259259
5,64.35185185188999
6,47.685185185189994
7,31.944444444489996
8,19.444444444489996
9,10.648148148189996
10,5.092592592629996
11,1.8518518518899962
12,0.4629629629999963

"0D",7.000000000002799,2.415229457698502,2,12
#,%
2,100
3,97.22222222222
4,91.66666666665999
5,83.33333333332999
6,72.22222222222999
7,58.33333333332999
8,41.66666666662999
9,27.777777777729995
10,16.666666666629993
11,8.333333333299993
12,2.7777777777399937

"+1D",8.45833333332976,2.214875006924007,2,12
#,%
2,100
3,99.537037037037
4,98.148148148147
5,94.907407407407
6,89.351851851847
7,80.555555555547
8,68.055555555547
9,52.314814814847004
10,35.648148148147
11,19.907407407447003
12,7.407407407447003

"+2D",9.344135802460015,1.9425616742069427,2,12
#,%
2,100
3,99.9228395061728
4,99.6141975308638
5,98.4567901234538
6,95.9876543209838
7,90.97222222221379
8,82.63888888888378
9,69.44444444448378
10,52.16049382718378
11,32.02160493828378
12,13.194444444483779

"+3D",9.930169753089867,1.7071127141815057,2,12
#,%
2,100
3,99.9871399176955
4,99.9228395061729
5,99.52417695473291
6,98.49537037037291
7,95.78189300411292
8,90.57355967078291
9,80.59413580247292
10,65.16203703707292
11,43.35133744857292
12,19.62448559667292

I then moved the numbers around to produce the table at the start.